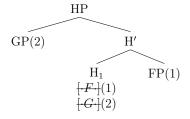
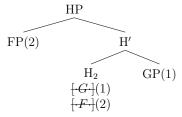
Deriving the order of operations from unordered features

Elise Newman esnewman@mit.edu

July 2, 2025


1 The big picture: limits on the lexicon

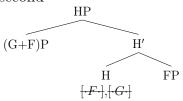
- Chomsky (1995): inputs to the combinatorial system are lexical items, which specify their syntactic (and semantic, phonological) properties/requirements.
 - Captures idiosyncrasy in verb-argument selection:
 - (1) Verbs in different contexts
 - a. Jo enjoys fruit. (DP object)
 - b. Amy turned <u>blue</u>. (AP object)
 - c. Beth depends on Lauri. (PP object)
 - d. Meg wants to go camping. (TP object)
 - e. Jo thinks that Marmie likes carrots. (CP object)
 - f. Meg introduced <u>Jo to Lauri</u>. (DP+PP objects)
 - g. Amy told Beth that Marmie likes carrots. (DP+CP objects)
- Puzzle: there are limits on the structures of VPs.
 - Newman (2024) considers certain lexical gaps:
 - (2) Imaginable but unattested selectional patterns
 - a. V selects for 4 arguments
 - b. V selects for 3 PPs
 - c. V selects for DP headed by every
 - d. ...
 - **Implication:** there must be some restrictions on the lexicon (e.g. no lexical items with the unattested subcat. requirements).


- A second issue: restrictions on the order of Merge
 - Example: verbs that select for a DP and a non-DP always merge the non-DP first.
 - Where do such restrictions come from?
 - * They used to come from phrase structure rules.
 - * A strategy I've been pursuing: deriving these restrictions from the inventory of features available to lexical items.

1.1 From lexical requirements to structure

- How does limiting in the inventory of structure-building features help constrain the order of operations?
 - First, let's examine how lexical requirements project to structure.
 - Imagine two lexical items, H₁ and H₂, with the same requirements.
 - (3) a. H_1 : selects for FP and GP
 - b. H₂: selects for FP and GP
 - Can these heads impose additional requirements on their structural environments, besides specifying *what* they want to merge with?
 - Two options:
 - 1. Option 1: **Yes**, lexical items can also specify the *order of operations* as well as the type.
 - * Explored most explicitly in theories with *stacked* feature bundles, where operations are discharged in a lexically/parametrically specified order (Heck and Müller, 2007; Müller, 2010; Georgi and Müller, 2010; Georgi, 2014, 2017; Martinović, 2015, 2023; Ershova, 2019, 2024).
 - * Only features at the top of the stack are accessible for checking/valuation at each step of the derivation.
 - (4) H₁ and H₂ specify different orders of Merge
 - a. H_1 checks F before $G \to FP$ is a complement

b. H_2 checks G before $F \to GP$ is a complement



- 2. Option 2: **No**, lexical items cannot specify the order of operations, only the type: H_1 and H_2 both necessarily have the same options for projecting to an HP.
 - * Explored most explicitly in frameworks with *unordered* bundles of features (see e.g. Longenbaugh 2019 for a proposal that argues this clearly in these terms).
 - * Every feature is simultaneously available for checking/valuation, where other principles determine the order of operations (or there is optionality).
- Important note: this talk isn't so much about the stacked features vs.
 unordered features debate, but about whether the order of operations is
 controlled by lexical or general factors.
 - * I think this is easiest to highlight by comparing these two frameworks, but what I argue for might not actually distinguish these two frameworks.

• My plan:

- Explore Option 2: H1 and H2 are indistinguishable (syntax-wise), and the order of operations is predictable from other rules.
- A hope: wherever you can predict the order of Merge/Agree from general principles rather than lexical distinctions, it is more explanatory to do so.
 - * This framing also echoes the *intrinsic* vs. *extrinsic* rule ordering debate in syntax, but as Georgi (2014) discusses at length, those terms are a bit vague so I will avoid them.

- Summary of Proposal: the identity of features and economy conditions like Free Rider are jointly responsible for predicting possible orders of operations.
 - **Assumption**: operations are induced by syntactic features on heads
 - (5) $[\cdot \alpha \cdot]$ = an instruction to Merge with an element bearing $[\alpha]$ (Heck and Müller, 2007; Müller, 2010)
 - * The identity of the syntactic feature determines what sorts of elements may satisfy it.
 - * The type of syntactic feature determines what sort of operation it induces: Merge or Agree
 - **Proposal**: these features are unordered on heads, such that they are all accessible for checking/valuation simultaneously
 - * Some elements can check/value more of a head's features than others: e.g. (G+F)P can check more features than FP.
 - * The order of operations may therefore determine how many elements get to Merge/Agree.
 - (6) H checks its features with either one or two instances of Merge
 - a. H checks $[\cdot F \cdot]$ against FP first $\to [\cdot G \cdot]$ can license (G+F)P second

b. (G+F)P checks both $[\cdot F \cdot]$ and $[\cdot G \cdot]$ first \to FP cannot merge

$$H'$$
 H
 $(G+F)P$
 $[-F-],[-G-]$

- Any condition that requires the presence of FP enforces the counterbleeding order of Merge → order of operations implicitly constrained by identity of features.
- Case studies:
 - 1. The distribution of DPs vs. non-DPs: non-DPs tend to be complements.

- 2. The position of VP within vP: VP fronting occurs when v takes a non-VP complement.
- 3. Subject/object asymmetries in wh-questions: wh-objects have an asymmetric ability to bleed introduction of the subject object wh-questions are morphosyntactically less flexible than subject wh-questions.

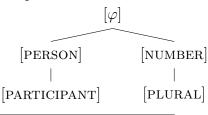
2 Notes from Agreement

• An idea from Chomsky (1995): sometimes, a goal for one probe can simultaneously satisfy other requirements of the same head.

(7) Free Rider condition

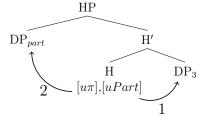
"It is the feature F itself that must enter into the checking relation, by (29); other features of FF[F] may also enter into checking relations as "free riders," carried along in the derivative chain ..." (Chomsky, 1995, p.246)

- An example of the Free Rider condition at work in Chomsky (1995):
 - Movement to satisfy T's EPP property simultaneously checks case and φ -agreement requirements.
 - * Suppose EPP is specified to check category feature D: case and φ are checked/valued as free riders.
- Many theories of agreement have used the free rider condition to predict which elements control agreement in different contexts: e.g. Béjar and Rezac (2009).

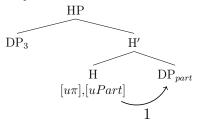

2.1 φ and Part

- The data: the prefixal agreement morpheme in Basque agrees with different arguments in different contexts.
 - (8) Basque (Béjar and Rezac, 2009, ex.2)
 - a. ikusi <u>z</u>-in-t-u-da-n seen 2-x-PL-have-1-PAST
 - 'I saw you.'
 - b. ikusi <u>n</u>-ind-u-en seen 1-x-have-PAST 'He saw me.'

- c. ikusi <u>n</u>-ind-u-zu-n seen 1-x-have-2-PAST 'You saw me.'
- d. ikusi <u>n</u>-u-en seen 1-have-PAST 'I saw him.'


• Generalization:

- The prefix agrees with the object unless the object is third person and the subject is a participant.
- **Their proposal**: leverages the idea that participants have a superset of the properties that non-participants have.
 - (9) A simplified φ -feature geometry from Harley and Ritter (2002) for Basque

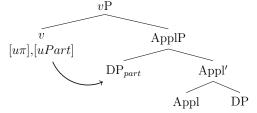


	3rd person	$\lfloor \pi \rfloor$
(10)	1st/2nd person	$[\pi]$
		[PART]

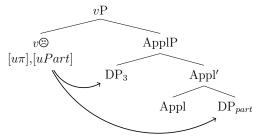
- Second part of their proposal: agreeing head has two probes, which look at the object before the subject
 - (11) H satisfies $[u\pi]$ and [uPart] with either one or two instances of Agree
 - a. H values $[u\pi]$ by probing DP_3 first $\to [uPart]$ probes again for DP_{part}

b. DP_{part} values both $[u\pi]$ and [uPart] first $\to DP_3$ is never probed

- **The point**: because of the Free Rider condition, regardless of which probe searches first, the features of the first goal can value the other probe on the head simultaneously, as free riders.
 - The identities of the features and the syntactic structure are all we need to predict which elements get agreed with.
 - * If the first goal is 3rd person, agreement happens twice.
 - * If the first goal is a participant, agreement happens once.


2.1.1 A chink in the armor

- Béjar and Rezac's (2009) analysis is one of the canonical examples of subsethood in φ -features determining agreement outcomes.
 - The logic is neat and works, but it is not clear how crucial the $[u\pi]$ probe is to the analysis.
 - (12) Basque absolutive "person" agreement: (Preminger, 2009, Table 2)


1sg	na
2sg	ha
3sg	
11	or 0
l 1pl	ga
2pl	za

• An analysis that makes more crucial use of the $[\pi]$ probe is Coon and Keine's (2021) feature gluttony approach to the Person Case Constraint (PCC) in e.g. Basque ditransitives, Icelandic dative-nominative constructions, and German copula constructions.

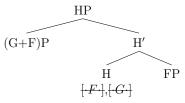
- (13) Agreeing once vs. twice matters:
 - a. \checkmark Agreeing once: a probe that copies one feature bundle knows how to instruct the morphology

b. *Agreeing twice: a probe that copies two distinct feature bundles doesn't know how to instruct the morphology

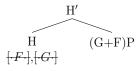
- So far, these cases have illustrated how the Free Rider condition works in agreement and how it interacts with the identity of features.
 - These cases highlight how these two components of the grammar conspire to predict how many elements get agreed with in different syntactic configurations.
 - Now we will extend the approach to Merge.

3 Extending to Merge

- The identity of features and the Free Rider condition predict which elements get agreed with.
 - Extending the logic to Merge would predict which elements get to Move/Merge.
 - We will see that, when applied to external Merge, this has consequences for the order of operations.
 - * Some orders of Merge have bleeding.
 - * Others have counterbleeding.

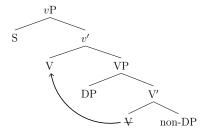

- Any principles of grammar that require something to Merge would thus enforce the counterbleeding order.

• Framework considerations:

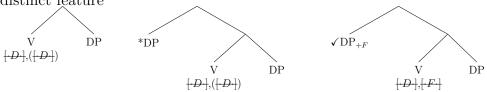

(14) Merge is feature-driven

- (15) Last Resort (Chomsky, 2000, 2001) α can only target K if a feature of either α or K is checked by the operation
- (16) **Feature Maximality** condition (extending Free Rider to Merge): Given a head H with features $[F_1]...[F_n]$, if XP discharges $[F_i]$, XP must also discharge each $[F_j]$ that it is capable of (Chomsky, 1995; Pesetsky and Torrego, 2001; Rezac, 2013; van Urk and Richards, 2015; Longenbaugh, 2019).
- (17) H checks its features with either one or two instances of Merge
 - a. H checks $[\cdot F \cdot]$ against FP first $\to [\cdot G \cdot]$ can license (G+F)P second

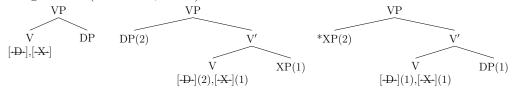
b. (G+F)P checks both $[\cdot F \cdot]$ and $[\cdot G \cdot]$ first $\to FP$ cannot merge



• What follows: some illustrations of how feature maximality/free rider can help us understand the order of operations.


3.1 Merge/Merge interactions

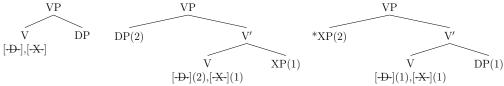
- **Observation**: DPs are often proposed to be either complements or specifiers; non-DPs are rarely proposed to be specifiers.
- (18) DP, non-DP pairs of internal arguments
 - a. Wallace put [the cheese] $_{DP}$ [in the cupboard] $_{PP}$.
 - b. Gromit bet $[5 \text{ dollars}]_{DP}$ [that Wendy wouldn't like cheese] $_{CP}$.


- c. Wallace persuaded [Gromit]_{DP} [to go on a trip to the moon]_{TP}.
- d. Gromit pulled [the branch]_{DP} [free]_{AP}.
- (19) The structure of these ditransitive vPs

- Stowell (1981): DPs are subject to the Case Filter, satisfied by adjacency with V
 - Issues: head-final languages show the same tendency, and theories of case assignment have largely moved away from licensing by adjacency (agree or dependent case not sensitive to adjacency)
 - Proposal: limit the inventory of Merge-inducing features
 - Taking inspiration from the literature on c-selection:
 - * DPs are c-selected; introduced by $[\cdot D \cdot]$
 - * non-DPs are not c-selected (but are rather s- or l-selected); introduced by non-specific $[\cdot X \cdot]$
 - $\mathbf{Key} :$ DPs check a superset of features that non-DPs can check
- (20) Consequence: Only one DP per phrase, unless another DP licensed by a distinct feature

(21) The non-DP first theorem: if V merges with a non-DP, the non-DP must merge first. (Newman, 2024)

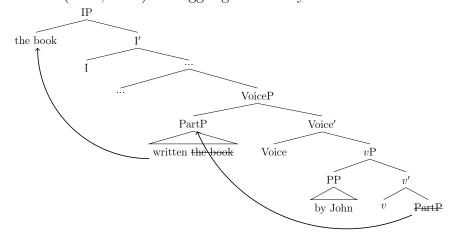
3.1.1 The debate about c-selection

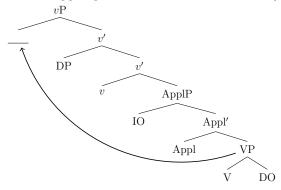

- **Proposal**: the inventory of Merge-inducing features assigned to heads is partially constrained by the kinds of c-selectional relationships that exist
 - Category selecting features: $[\cdot D \cdot]$, $[\cdot V \cdot]$, but not $[\cdot P \cdot]$, $[\cdot C \cdot]$
- To the extent that we need c-selection, it's usually to regulate the distribution of DPs and VPs.
 - Grimshaw (1979): selection for DP distinguishes classes of verbs
- (22) Ask selects for Q(uestion), satisfied by CP, DP, PP
 - a. John asked $[_{CP}$ what the time was].
 - b. John asked $[_{DP}$ the time].
 - c. John asked [PPabout the time].
- (23) V s-selects Q, satisfied by CP but not DP
 - a. John wondered [$_{CP}$ what the time was].
 - b. *John wondered [$_{DP}$ the time].
 - c. John wondered [$_{PP}$ about the time].
 - d. Bill inquired [$_{CP}$ how old I was].
 - e. *Bill inquired [$_{DP}$ my age].
 - f. Bill inquired [$_{PP}$ about the time].
 - Pesetsky (1982): maybe we never need c-selection beyond DP-selection
 - Verbs that select for PP arguments either care about the meaning or the lexical P: hallmark of s-selection or l-selection
 - (24) David depended **on**/*at/*with/*for Jane for help.
 - It isn't obvious that there are any verbs that select for the categories P or C, as such.
 - Selection for CPs and PPs governed by lexical and semantic considerations.
 - Pesetsky suggests maybe we don't need category selection at all, if just to account for DPs, but I will take up [·D·] as a limited example of c-selection.
 - One example of the grammar caring about DP vs. non-DP: meta-restrictions on selection

3.1.2 Meta-restrictions on selection

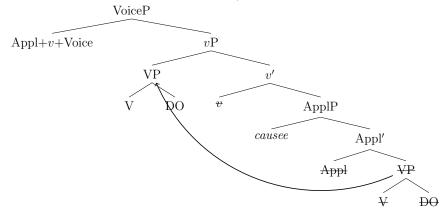
- Observation: The number of arguments in the verbal domain is limited to at most four (Hale and Keyser, 1993, 2002; Marelj, 2002; Juarros, 2003).
- Of the maximally four arguments, there are restrictions on their categorial composition:
 - At most two can be DPs. (adding a third DP requires the addition of functional structure)
 - At most two can be non-DPs.
 - (25) (DP) V (DP) (XP) (XP)
 - Conclusion: the distinction between DPs and non-DPs is important to the factors that constrain verbal phrase structure.
 - Distinctions among non-DP categories are not important to the factors that constrain verbal phrase structure.
- (26) Clauses with more than 2 DPs need extra functional structure:
 - a. Amy gave [ApplP] Jo] a book. (2 DPs + 1 ApplP)
 - b. Beth showed the painting to Laurie. (2DPs + 1 PP)
 - c. Meg wants Amy to eat carrots. (2 DPs + 1 TP)
 - d. Amy told Beth that Marmie likes carrots. (2 DPs + 1 CP)
 - The normal verbal structure allotted to clauses (V+v) is enough to license at most two DPs.
 - Additional DPs require additional functional structure. (Baker, 1988; Larson, 1988; den Dikken, 1991; McGinnis, 2001; Pylkkänen, 2008)
 - Observation: the additional functional structure that one can add also has limits
 - At most two non-DP arguments can be selected by a single verb.
- (27) Some clauses with 2 non-DPs:
 - a. Jo relies on Laurie for support. (1 DP + 2 PPs)
 - b. Meg counted on Jo to help. (1 DP + 1 PP, 1 TP)

- c. Amy heard from Beth that Marmie likes carrots. (1 DP + 1 PP, 1 CP)
- d. Jo bet against Laurie for a new bike. (1 DP + 2 PPs)
- e. Laurie bet $[\underline{ApplP}]$ Jo his allowance that Amy would want to come. (2 DPs + 1 ApplP, 1 CP)
- (28) Can't have 3 (or more) non-DPs
 - a. *Meg counted <u>on Jo</u> <u>for support</u> <u>to help.</u> intended reading: Meg <u>counted on Jo</u> for support and help
 - b. *Lauri bet <u>against Jo for a new bike</u> that Amy would want to come. intended reading: Laurie bet Jo a new bike that...
 - Strikingly, these restrictions seem to be *categorial* rather than semantic.
 - Justification: Thematic roles are not uniquely tied to particular categories.
 - (29) Prepositional 'direct objects'
 - a. Meg objected to Amy's mischief.
 - cf. Meg denounced Amy's mischief.
 - b. Beth complied with Marmie's orders.
 - cf. Beth followed <u>Marmie's orders</u>.
 - (30) Thematic roles realized as multiple categories
 - a. Agent: DP or by-phrase
 - i. Sue ate a strawberry.
 - ii. The strawberry was eaten by Sue.
 - b. Propositional arguments: CP or DP
 - i. Laurie said that Amy likes carrots.
 - ii. Laurie said something.
 - c. Recipient: to-phrase or ApplP
 - i. Meg gave <u>Marmie</u> a present.
 - ii. Meg gave a present to Marmie.
 - Bet can clearly assign three internal argument theta-roles, where those roles can sometimes alternate between DP/non-DP formats.
 - ...but the arguments can't all take their non-DP forms at the same time.
 - Conclusion: the category D is important for understanding restrictions on the number and types of arguments
 - Other categories, like P and C, are not.


- What does this mean for the features driving Merge?
 - * Last Resort requires Merge to be licensed by a feature, but my proposal is that the identities of features need to be motivated by selection.
 - * **Proposal**: categories that are not c-selected are merged in response to a non-specific feature $[\cdot X \cdot]$.
- When we take into account the Free Rider/Feature Maximality condition, the introduction of $[\cdot X \cdot]$ to introduce non-DPs has consequences for the order of operations:
 - * If DP merges first, it checks both $[\cdot D\cdot]$ and $[\cdot X\cdot]$.
 - * If non-DP merges first, it checks only $[\cdot X \cdot]$.
- A desire to satisfy selectional requirements of heads/empty the numeration can enforce the order in which non-DP gets to Merge constrains the order of operations!
- (31) Interactions between $[\cdot D \cdot]$ and $[\cdot X \cdot]$ given Free Rider/Feature Maximality: non-DPs must merge first or not at all

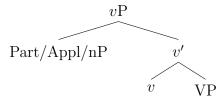

3.2 v and its complement

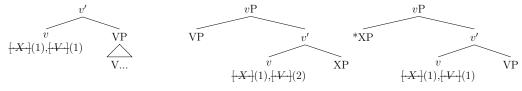
- So far, we have looked V's features and how they conspire to predict which phrase is V's complement vs. specifier.
 - Now we address the same issue for v.
 - * v likely has an additional feature for merging VP: $[\cdot V \cdot]$
 - * How do we know?
- The logic of the relationship between v and V is one of c-selection:
 - A v that is positively specified to introduce an external argument can merge with a range of VPs:
 - (32) Verbs that take external arguments with a variety of internal structures/roots
 - a. Wallace laughed. (VP = [laugh])


- b. Wallace saw Gromit. (VP = [see Gromit])
- c. Wallace depended on Gromit. (VP = [depend on Gromit])
- d. ...
- Similarly, a v head that does not take an external argument can merge with a variety of VPs.
 - (33) Verbs that don't take external arguments with a variety of internal structures/roots
 - a. Weather verbs (VP = [V])
 - b. Unaccusatives (VP = [V DP])
 - c. Ditransitive unaccusatives (VP = [V DP PP/CP])
- To describe the selectional properties of any v head, we can't be more specific than "VP" a characteristic of c-selection.
- This is no surprise, given the literature on c-selection.
 - Odijk (1997) argues the c-selection for VP exists, based on the selection patterns of modals, e.g., as an argument against reducing all c-selection to other properties of the grammar.
- Observation: v takes VP as its complement except for when it doesn't.
 - Sometimes v takes other phrases as its complement: ApplP, PartP, nP, etc.
 - In these cases, many researchers observe VP-fronting, or *smuggling*.
- (34) Collins (2005, 2024): Smuggling derived by movement


(35) VP smuggling in a ditransitive Collins (2024)

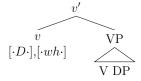
(36) A smuggling approach to Romance *faire* causatives (Pitteroff and Campanini, 2013, 227, with adjusted notation)

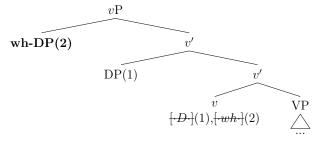

(37) Smuggling out of a nominalized VP in French/Italian/RP Spanish faire-par infinitives (Sheehan and Cyrino, 2016, ex. 22)


- (38) Se hicieron [construir una casa (por un grupo de arquitectors)].

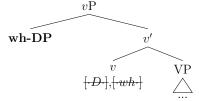
 SE made.3PL build a house by a group of architects

 'They had a house built by a group of architects.' Spanish (Sheehan and Cyrino, 2016, ex. 1e)
 - What is the theoretical motivation for smuggling/VP-fronting in these cases?
 - The empirical motivation comes from word order and binding/scope facts.
 - But why should things merge/move in this way?
 - * I.e. why should Part/Appl/nP merge as a complement and VP as a specifier?
 - * If v has requirements to merge with both phrase types, they could have merged another way.
- (39) Checking $[\cdot V \cdot]$ and $[\cdot Part/Appl/n \cdot]$ differently

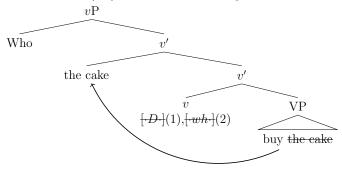

- Two ways to enforce the smuggling order:
 - 1. If Part/Appl/n happen to have $[\cdot V \cdot]$ as well, that would go unsatisfied in (39), or
 - 2. If the feature that introduces other phrases (Part/Appl/n) is $[\cdot X \cdot]$, merging VP first would bleed the possibility of merging Part/Appl/nP.
- (40) vPs: a non-VP must merge first \rightarrow makes VP a specifier.


- On the assumption that Part/Appl/n are not c-selected (some of these aren't even categories), then they must be introduced by $[\cdot X \cdot]$.
 - If they don't merge first, they don't merge at all \rightarrow enforces counterbleeding order.

3.3 v and its specifier


- v has $[\cdot V \cdot]$ and $[\cdot X \cdot]$ for licensing its various kinds of complements (except when VP becomes a specifier).
 - v also hosts various kinds of specifiers, including the external argument and successive-cyclically moved $\bar{\mathbf{A}}$ -phrases.
 - -v therefore needs features to license those elements too.
- (41) v can minimally host a DP specifier and a wh-marked specifier.

- ullet One could think about the $ar{\mathbf{A}}$ -feature in different ways.
 - Specific $\bar{\rm A}/{\rm wh}$ -feature vs. generalized *edge*-feature (Chomsky, 2005; Müller, 2010).
 - Feature Maximality restricts the choice somewhat: an external argument should be able to check a generalized edge feature, bleeding Ā-movement.
 - A specified \bar{A} -feature won't have this issue.
- $[\cdot D\cdot]$ and $[\cdot wh\cdot]$ on v interact the way $[\cdot D\cdot]$ and $[\cdot X\cdot]$ did, whenever there is a wh-DP present.
- (42) If a DP merges before a wh-DP merges $\rightarrow v$ has two specifiers



(43) If a wh-DP merges first, it satisfies both features $\rightarrow v$ has one specifier

- If the wh-DP is an internal argument, the order of operations has consequences for transitivity.
 - Result: transitive object questions require [·D·]-checking before [·wh·]-checking
 - (44) What did Sue buy? requires derivation (42)
- (45) a. If wh-DP in (42) is an internal argument \rightarrow transitive clause.
 - b. If wh-DP in (43) is an internal argument \rightarrow intransitive clause; subject can't Merge.
 - When wh-DP is an external argument, the order of operations doesn't affect transitivity in the same way the external argument always gets to merge.
 - I.e. subject wh-phrases have no consequences for theta-role assignment/argument selection.
 - (46) Who ate the cake?

 derivable from (42) or (43)
- (47) a. If wh-DP in (42) is an external argument \rightarrow transitive clause.

- b. If wh-DP in (43) is an external argument \rightarrow transitive clause.
- One order of operations allows the object to A-move, however.
 - Consequence: subject wh-questions can be derived from multiple orders of operations.
 - * In one derivation, the clause looks identical to when the subject is not a wh-phrase.
 - * In another, the clause contains exceptional A-movement of the object \rightarrow consequences for morphosyntax?
- How is the choice made between these two orders?

- Option 1: true optionality
- Option 2: parametrically some languages choose A-movement derivation and others don't.
 - * Evidence: languages with the Ergative Extraction Restriction have intransitive-looking subject questions, possibly derived by A-movement of the object (Newman, 2024).
 - * Other languages have transitive-looking subject questions, derived by joint $[\cdot D \cdot]$ and $[\cdot wh \cdot]$ -checking by the subject.
- Expectation: subject questions should be morphosyntactically more diverse across languages than object questions.
 - Questions for the future: DP-VP interactions
 - * Are transitive clauses always derived with VP complements and DP specifiers?
 - * Or do languages ever merge DP as the complement and VP as the specifier?
 - * A thought: maybe different case alignments follow from different choices.
 - Putting it all together: DP-VP-whP-XP interactions in vP
 - * Newman (2024) looks at some cases of such interactions and suggests an economy condition might help resolve certain types of optionality, but we don't have time to explore that here.

4 Conclusion

- Constraints on the order of operations can come from many sources:
 - I've highlighted two factors:
 - 1. the identity of features
 - 2. the Free Rider condition
 - These two factors cover several scenarios where we might have wanted to posit lexical restrictions on the order of operations.
 - * The logic being: when one element checks a subset of the features that another element checks, it had better merge/agree first or not at all.
- A hope: maybe we can outsource *all* ordering restrictions to independent factors, and constrain the lexical distinctions available to a grammar.
 - A challenge: we expect true optionality in cases where elements don't have overlapping features.

- * E.g. when a wh-PP and DP both want to merge in Spec vP, nothing enforces one order over the other.
- * Maybe this is right? It's not clear whether morphosyntactic factors would be able to distinguish different specifier orders of DPs and wh-PPs...

References

- Baker, Mark. 1988. *Incorporation: a theory of grammatical function changing*. University of Chicago Press.
- Bobaljik, Jonathan D. 2008. Where's phi? Agreement as a post-syntactic operation. In *Phi theory*. Oxford: Oxford University Press.
- Béjar, Susana, and Milan Rezac. 2009. Cyclic agree. Linguistic Inquiry 40:35–73.
- Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT Press.
- Chomsky, Noam. 1995. The Minimalist Program. Cambridge, MA: MIT Press.
- Chomsky, Noam. 2000. Minimalist inquiries: The framework. In *Step by step: Essays on minimalist syntax in honor of Howard Lasnik*, ed. R. Martin, D. Michaels, and J. Uriagereka, 89–155. MIT Press.
- Chomsky, Noam. 2001. Derivation by phase. In *Ken Hale: A life in language*, ed. Michael Kenstowicz, 1–52. Cambridge, MA: MIT Press.
- Chomsky, Noam. 2005. Three factors in language design. Linguistic Inquiry 36:1–22.
- Collins, Chris. 2005. A smuggling approach to the passive in English. Syntax (Oxford, England) 8(2):81–120.
- Collins, Chris. 2024. Principles of argument structure: A Merge-based approach. Linguistic Inquiry Monographs. Cambridge, MA: MIT Press.
- Coon, Jessica, and Stefan Keine. 2021. Feature gluttony. *Linguistic Inquiry* 52:655–710.
- den Dikken, Marcel. 1991. Particles and the dative alternation. In *Leiden Conference* of Junior Linguists 2 Proceedings.
- Ershova, Ksenia. 2019. Syntactic ergativity in West Circassian. PhD, University of Chicago.
- Ershova, Ksenia. 2024. Phasehood as defective intervention: Possessor extraction and selective DP islandhood in West Circassian. *Syntax* 1–46.

- Georgi, Doreen. 2014. Opaque interactions of Merge and Agree: on the nature and order of elementary operations. PhD, Leipzig University.
- Georgi, Doreen. 2017. Patterns of movement reflexes as the result of the order of Merge and Agree. *Linguistic Inquiry* 48:585–626.
- Georgi, Doreen, and Gereon Müller. 2010. Noun phrase structure by reprojection. Syntax 13:1–36.
- Grimshaw, Jane. 1979. Complement selection and the lexicon. *Linguistic Inquiry* 10:279–326.
- Hale, K., and S. J. Keyser. 1993. On argument structure and the lexical expression of syntactic relations. In *The view from Building 20: Essays in honor of Sylvain Bromberger*, ed. K. Hale and S. J. Keyser. Cambridge, MA: MIT Press.
- Hale, Ken, and Samuel Jay Keyser. 2002. Prolegomenon to a Theory of Argument Structure. Cambridge, MA: The MIT Press.
- Harley, Heidi, and Elizabeth Ritter. 2002. Person and number in pronouns: A feature-geometric analysis. *Language* 78:482–526. Publisher: Linguistic Society of America.
- Heck, Fabian, and Gereon Müller. 2007. Extremely local optimization. In *Proceedings* of WECOL34, ed. Erin Bainbridge and Brian Agbayani, 170–182. California State University, Fresno.
- Juarros, Eva. 2003. Argument structure and the lexicon/syntax interface. PhD Thesis, University of Massachusetts Amherst.
- Larson, Richard. 1988. On the Double Object Construction. *Linguistic Inquiry* 19:335–392.
- Longenbaugh, Nicholas. 2019. On expletives and the agreement-movement correlation. PhD Thesis, MIT, Cambridge, MA.
- Marelj, Marijana. 2002. Rules that govern the cooccurences of theta-clusters in the 'Theta-System'. *Theoretical Linguistics* 28(3):357–373.
- Martinović, Martina. 2015. Feature geometry and head-splitting: Evidence from the Wolof clausal periphery. PhD, University of Chicago.
- Martinović, Martina. 2023. Feature geometry and head splitting in the Wolof clausal periphery. *Linguistic Inquiry* 54:79–116.
- McGinnis, Martha. 2001. Phases and the syntax of applicatives. In *Nels 31*, ed. Minjoo Kim and Uri Strauss, 333–349. Amherst: University of Massachusetts, GLSA.

- Müller, G. 2010. On deriving CED effects from the PIC. Linguistic Inquiry 41(1):35–82.
- Newman, Elise. 2024. When arguments merge. Linguistic Inquiry Monographs. Cambridge, MA: MIT Press.
- Odijk, Jan. 1997. C-selection and s-selection. Linguistic Inquiry 365–371.
- Pesetsky, David, and Esther Torrego. 2001. T-to-C movement: Causes and consequences. In *Ken Hale: A life in language*, ed. Michael Kenstowicz, 355–426. Cambridge, MA: MIT Press.
- Pesetsky, David Michael. 1982. Paths and categories. PhD Thesis, MIT, Cambridge, MA.
- Pitteroff, Marcel, and Cinzia Campanini. 2013. Variation in analytic causative constructions: a view on German and Romance. *Journal of Comparative German Linguistics* 16:209–230.
- Preminger, Omer. 2009. Breaking agreements: Distinguishing agreement and clitic doubling by their failures. *Linquistic Inquiry* 40(4):619–666.
- Preminger, Omer. 2014. Agreement and its failures. The MIT Press.
- Pylkkänen, Liina. 2008. Introducing arguments. The MIT Press.
- Rezac, Milan. 2013. Case and licensing: evidence from ECM+DOC. *Linguistic Inquiry* 44(2):299–319.
- Sheehan, Michelle, and Sonia Cyrino. 2016. Variation and change in the faire-par causative. In *Romance Languages and Linguistic Theory*, ed. E. Carrilho, A. Fieis, M. Lobo, and S. Pereira, 279–304. John Benjamins.
- Stowell, Timothy Angus. 1981. Origins of phrase structure. PhD Thesis, MIT, Cambridge, MA.
- van Urk, Coppe, and Norvin Richards. 2015. Two components of long-distance extraction: Successive cyclicity in Dinka. *Linguistic Inquiry* 46(1):113–155.

A Merge/Agree interactions

- Where we started: Agree/Agree interactions.
 - What we've just seen Merge/Merge interactions
 - What about Agree/Merge interactions?

- If operations are really not lexically ordered, how do we derive movement/agreement correlations?
 - An advertisement: Longenbaugh (2019) has an interesting perspective on this issue.
 - * Proposal: Agree and Merge are not lexically ordered
 - * But they can feed/bleed each other, so order has consequences for phenomena like Romance Past Participal Agreement (PPA):
 - 1. Agree before Merge \rightarrow PPA
 - 2. Merge before Agree \rightarrow transitive clause, no PPA
- Longenbaugh follows the Heck and Müller (2007) approach to separate the features driving Merge and Agree, instead of wrapping them into EPP features.
 - This view suggests that there is no relationship between Merge and Agree.
 - * Merge induced by $[\cdot \alpha \cdot]$ features
 - * Agree applies at a distance, induced by $[u\alpha]$
 - Puzzle: then how do we account for movement/Agreement correlations? i.e. how do we ensure that the thing that agrees is also the thing that moves and vice versa?
 - Romance past participle agreement: object doesn't control agreement unless it A-moves.
 - (48) Participle never agrees with in situ transitive objects
 - a. Ho mangiat-o/*a la mela. have.1.SG eaten-M.SG/*F.SG the apple 'I have eaten the apple.'
 - (D'Allessandro & Roberts 2008) Standard Italian

French

b. Jean n'a jamais fait-(*es) ces Jean NEG.have.3SG never done-M.SG/*F.SG these sottises.

stupid.things.F.PL

'Jean has never done these stupid things.'
(Belletti 2006)

(49) Participle always agrees with raised internal argument, as in passives/unaccusatives

a. **Due ladri** sono entrat-i/*o dalla finestra. two robbers are entered-M.PL/*M.SG from the

window

'Two robbers entered from the window.'
(Belletti 2006: ex. 34c)

Standard Italian

b. **Alcuni sindaci** sono stati some.M.PL mayors.M.PL are.PL been.M.PL arrestat-i/*o. arrested.M.PL/*SG

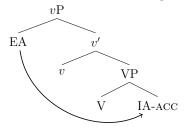
'Some mayors were arrested.'

(Longenbaugh 2019: ex. 33b) Standard Italian

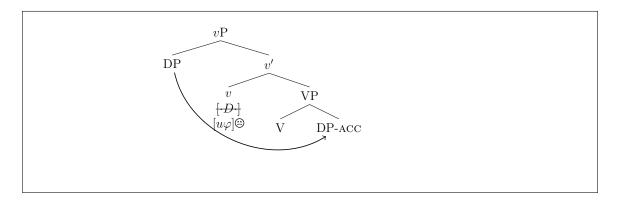
c. **Trois erreurs** ont été fait-*(**es**). three errors have.PL been made.F.PL

'Three errors have been made.' (Longenbaugh 2019: ex. 22b)

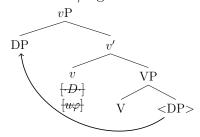
French


d. Trois sauterelles sont mort-*(es).
 three grasshoppers be.PL dead.PL
 'Three grasshoppers died.'

(Longenbaugh 2019: ex. 23b)


French

- This kind of pattern used to be an argument that Merge and Agree were tightly connected: one fed the other
 - Except that we know that Merge can occur without Agree, and Agree can occur without Merge.
- Longenbaugh's observation: it's not just movement and agreement that look correlated here
 - Agreement and case are also correlated.
 - * Agreement only targets nominative arguments, not accusative ones.
- Longenbaugh's solution: playing with the order of operations
 - He suggests that case assignment is impacted by the order of Merge, and the order of Merge can be impacted by the timing of Agree.


- 1. External Merge feeds accusative case assignment, due to a dependent case algorithm.
- 2. Accusative case assignment bleeds agreement due to case discrimination.
- 3. Agree bleeds external Merge because of Feature Maximality: the DP that controls agreement also checks $[\cdot D \cdot]$.
- Different choices of when to Agree/Merge lead to different case/agreement outcomes due to bleeding effects.
- (50) Dependent Case valuation (ex. 11, p. 28) Transitive clause: Merge EX, value Case on IA:

- Takeaway: external Merge feeds accusative case assignment.
- Longenbaugh's proposal:
 - (51) Feature makeup of v:
 - a. $[u\varphi]$: for controlling PPA
 - b. $[\cdot D \cdot]$: for introducing the external argument
- Putting it together:
 - If external Merge precedes Agree, it bleeds Agree by making the object accusative.
 - (52) Merge before Agree: no Agree

- We saw what happens when Merge precedes Agree: bleeding
 - What would happen if the internal argument moved/agreed first?
 - (53) Movement/Agreement bleeds transitivity

- Takeaway: two kinds of bleeding effects
 - 1. External Merge bleeds Agree
 - 2. Agree bleeds external Merge
- Result: we only observe past participle agreement when no external Merge takes place → movement/agreement correlation follows
- Summary: here again, there is no extrinsic ordering of operations.
 - But the logic of feature maximality makes it so that different orders have different outcomes regarding which elements get to Merge/Agree.
 - Thus, permitting optionality in the derivation rather than imposing an order allows for all of the attested outcomes.